


the distributions of the documents in a user’s search history
to get a single vector modelling that user. So in a single
semantic space, we may model that cat and dog are simi-
lar, that two documents on classic cars belong to the same
topic, and that two users who browse programming forums
may have relevant information for each other (even if they
do not necessarily browse the same sites).

4. SYSTEM ARCHITECTURE
A PeARS network consists of n peers {p1...pn}, corre-

sponding to n users {u1...un} connected in a distributed
typology (all peers are connected to all other peers). Each
peer pk has two components: a) an indexing component Ik;
b) a query component Qk. All peers also share a common se-
mantic space S which gives DS representations for words in
the system’s vocabulary. In our current implementation, S
is given by the CBOW semantic space of [1], a 400-dimension
vector space of 300,000 lexical items built using a state-of-
the-art neural network language model.

Indexing: Ik builds vector representations for each doc-
ument in uk’s browsing history. For instance, if uk visits
the Wikipedia page on Bangalore, the URL of that page
becomes associated with a 400-dimension vector produced
by summing the distributions of the 10 most characteristic
words for the document (these are identified by comparing
their document frequency to their entropy in a large cor-
pus). At regular interval, Ik also updates uk’s profile by
summing the vectors of all indexed documents, outputting
a 400-dimension vector ~uk which inhabits an area of the
semantic space related to their interests (i.e., the type of
information they have browsed).

As a result of the indexing process, two types of infor-
mation are made freely available across the network: the
user profile ~uk and the individual document vectors Dk =
{d1...dn} used to build ~uk (at a particular URI, or in the
form of a distributed hash table). Periodically, each peer
p1...pn scans the network to collect all profiles ~u1... ~un and
stores them locally.
Querying: Qk takes a query q and translates it into a

vector ~q by summing the words in the query. It then goes
through a 2-stage process: 1) find relevant peers amongst
p1...pn by calculating the distance between ~q and all users’
profiles ~u1... ~un (vector distance is operationalised as cosine
similarity); 2) on the m relevant peers, calculate the distance
between ~q and all documents indexed by the peer. Return
the URLs corresponding to the smallest distances, in sorted
order.

5. PERFORMANCE
Speed: Qk involves two stages: 1) the computation of

cosine similarities between a query (one vector with 400 di-
mensions) and all the peers on the network (a matrix with
dimensionality n × 400); 2) calculating cosine between the
query and the documents hosted by the most relevant peers,
as identified in the first stage. For the purpose of assessing
system speed, we generate random vectors and perform co-
sine over the generated set. Our current implementation,
running on a 4GB Ubuntu laptop under normal load, per-
forms the calculation over batches of n=100,000 peers at
stage 1. Each batch is computed in around 350ms. At stage
2, assuming an average of 10,000 documents per node, the
computation time is 45ms for each peer.

This preliminary investigation indicates that on a home
machine, the system covers up to 200,000 peers × 10,000
= 2 billion documents in around a second (we must sub-
tract potential redundancies between peers from this figure).
Note that in a ‘real-life’ system, we would need to include
additional time to retrieve the indices of the remote peers.
However, we can also increase efficiency by sorting the list
of known peers as a function of their similarity to the user’s
profile and caching the most similar nodes. The premise is
that a user will very often search for information related to
their interests and thus require access to peers that are like
their own profile.

Accuracy: Measuring the search accuracy of the system
is ongoing work. We are testing the system’s architecture on
real user queries from the search engine Bing, as available
– together with the Wikipedia page users found relevant for
the respective queries – from the WikiQA corpus [3]. Our
current simulation is a network of around 4000 peers cov-
ering 1M documents, modelled after the publicly available
profiles of Wikipedia contributors. Preliminary results in-
dicate that our system, when consulting the m = 5 most
promising peers for each query, outperforms a centralised
solution, as implemented by the Apache Lucene search en-
gine1 (Herbelot & QasemiZadeh, in prep.).

6. CONCLUSION
We have presented an architecture for a user-centric, dis-

tributed Web search algorithm that utilises the inherent
‘specialisms’ of individuals as they browse the Internet.

We should note that our system relies on the willingness
of its users to share some of their search history with oth-
ers. We alleviate the privacy concerns associated with this
requirement in three ways: a) the user can create a blacklist
of sites that will never be indexed by the system; b) before
making an index available, the agent clusters documents into
labelled topics and presents them to the user, who can de-
cide to exclude certain topics from the index; c) there is no
requirement for the shared index to be linked to a named
and known user.

PeARS is under active development and code is regularly
made available at https://github.com/PeARSearch.

7. ACKNOWLEDGMENTS
Grateful thanks to Hrishikesh K.B., Veesa Norman, Shobha

Tyagi, Nandaja Varma and Behrang QasemiZadeh for their
technical contributions to the project, and to the anonymous
reviewers for their helpful feedback. The author acknowl-
edges support from the ERC Grant 283554 (COMPOSES).

8. REFERENCES
[1] Marco Baroni, Georgiana Dinu, and Germán

Kruszewski. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting
semantic vectors. In ACL2014, pages 238–247, 2014.

[2] Katrin Erk. Vector space models of word meaning and
phrase meaning: A survey. Language and Linguistics
Compass, 6(10):635–653, 2012.

[3] Yi Yang, Wen-tau Yih, and Christopher Meek.
WIKIQA: A Challenge Dataset for Open-Domain
Question Answering. In EMNLP2015, 2015.

1http://lucene.apache.org/

42

https://github.com/PeARSearch
http://lucene.apache.org/

	Introduction
	Intuition
	Distributional semantics (DS)
	System architecture
	Performance
	Conclusion
	Acknowledgments
	References



